Sparse Non-Negative Matrix Factorization for Mesh Segmentation
نویسندگان
چکیده
منابع مشابه
Sparse Non-Negative Matrix Factorization for Mesh Segmentation
We present a method for 3D mesh segmentation based on sparse non-negative matrix factorization (NMF). Image analysis techniques based on NMF have been shown to decompose images into semantically meaningful local features. Since the features and coefficients are represented in terms of non-negative values, the features contribute to the resulting images in an intuitive, additive fashion. Like sp...
متن کاملA Method for Parallel Non-negative Sparse Large Matrix Factorization
This paper proposes parallel methods of non-negative sparse large matrix factorization. The described methods are tested and compared on large matrices processing.
متن کاملGroup Sparse Non-negative Matrix Factorization for Multi-Manifold Learning
Many observable data sets such as images, videos and speech can be modeled by a mixture of manifolds which are the result of multiple factors (latent variables). In this paper, we propose a novel algorithm to learn multiple linear manifolds for face recognition, called Group Sparse Non-negative Matrix Factorization (GSNMF). Via the group sparsity constraint imposed on the column vectors of the ...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Image and Graphics
سال: 2016
ISSN: 0219-4678,1793-6756
DOI: 10.1142/s0219467816500042